From American Scientist:
To get a clear view of infrared emissions from celestial objects, the Spitzer Space Telescope has been cryogenically cooled—and what sights it has seen.
In astrophysical observations, more is more—imaging across multiple wavelengths leads to richer information. One electromagnetic band in which most celestial bodies radiate is the infrared: Objects ranging in location from the chilly fringes of our Solar System to the dust-enshrouded nuclei of distant galaxies radiate entirely or predominantly in this band. Thus, astrophysicists require good visualization of these wavelengths. The problem, however, is that Earth is a very hostile environment for infrared exploration of space, as the atmosphere also emits in the infrared spectrum and additionally absorbs much of the incoming signal. Even heat produced by a telescope itself can degrade its own clarity.
Read more ....
A Science News Aggregator That Covers Stories in the World Of Science And Technology.
Showing posts with label Spitzer Space Telescope. Show all posts
Showing posts with label Spitzer Space Telescope. Show all posts
Monday, December 21, 2009
Wednesday, January 28, 2009
Astronomers Get A Sizzling Weather Report From A Distant Planet
Photo from Spitzer Space Telescope (Wikipedia)
From E! Science News:
Astronomers have observed the intense heating of a distant planet as it swung close to its parent star, providing important clues to the atmospheric properties of the planet. The observations enabled astronomers at the University of California, Santa Cruz, to generate realistic images of the planet by feeding the data into computer simulations of the planet's atmosphere. "We can't get a direct image of the planet, but we can deduce what it would look like if you were there. The ability to go beyond an artist's interpretation and do realistic simulations of what you would actually see is very exciting," said Gregory Laughlin, professor of astronomy and astrophysics at UCSC. Laughlin is lead author of a new report on the findings published this week in Nature.
The researchers used NASA's Spitzer Space Telescope to obtain infrared measurements of the heat emanating from the planet as it whipped behind and close to its star. In just six hours, the planet's temperature rose from 800 to 1,500 Kelvin (980 to 2,240 degrees Fahrenheit).
Read more ....
From E! Science News:
Astronomers have observed the intense heating of a distant planet as it swung close to its parent star, providing important clues to the atmospheric properties of the planet. The observations enabled astronomers at the University of California, Santa Cruz, to generate realistic images of the planet by feeding the data into computer simulations of the planet's atmosphere. "We can't get a direct image of the planet, but we can deduce what it would look like if you were there. The ability to go beyond an artist's interpretation and do realistic simulations of what you would actually see is very exciting," said Gregory Laughlin, professor of astronomy and astrophysics at UCSC. Laughlin is lead author of a new report on the findings published this week in Nature.
The researchers used NASA's Spitzer Space Telescope to obtain infrared measurements of the heat emanating from the planet as it whipped behind and close to its star. In just six hours, the planet's temperature rose from 800 to 1,500 Kelvin (980 to 2,240 degrees Fahrenheit).
Read more ....
Labels:
astronomy,
Spitzer Space Telescope
Subscribe to:
Posts (Atom)